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Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused
high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile
bone strength have been proven to significantly increase risk of fragility fractures. Currently,
various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy
bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients
with delayed fracture healing and nonunions, may turn out to be another potential and effective
therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus
contributing to an increase in bone mass and strength. However, accurate mechanisms of the
positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to
summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and
cellular studies. Possible mechanisms are also introduced, and the future possibility of application
of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 2017;9999:XX–XX.
© 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Postmenopausal osteoporosis (PMOP) is a silent
skeletal disorder characterized by compromised bone
strength, which increases risk of fracture [Watts et al.,
2010]. In women, increasing bone turnover, continu-
ous bone loss, and consequent fractures are critical
manifestations of PMOP, which have impaired quality
of life and have led to increased mortality [Baron and
Kneissel, 2013]. Thus, osteoporosis is becoming a
global public issue and heavy burden on society. In
the future, almost half of the population over the age
of 60 in developed countries will suffer from osteopo-
rosis, 80% of which are postmenopausal women
[Cummings and Melton, 2002; Watts et al., 2010]. It
has been conservatively estimated that about 17
billion dollars was directly spent on the care of
osteoporotic fractures in the United States in 2005,
and the direct cost of osteoporosis could increase to
25 billion dollars by 2025 [Burge et al., 2007].

Recommendations from high-quality evidenced-
based guidelines for PMOP [Watts et al., 2010;
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Compston et al., 2013; Kanis et al., 2013] include
drugs such as alendronate, risedronate, zoledronic
acid, denosumab, raloxifene, calcitonin, and teripara-
tide, hormone replacement therapy (estrogen and
androgen), and supplements such as calcium and
vitamin D. They have proven to be effective in
preventing bone loss and reducing the incidence of
fractures based on evaluations at different stages. In
addition to pharmacotherapy, physical therapy with
the highest recommendation that is graded by the
newly released guidelines for the treatment of PMOP
[Camacho et al., 2016] may prevent bone mass loss
and improve patients’ quality of life.

As a kind of physical therapy, therapeutic time-
varying pulsed electromagnetic fields (PEMFs) with
specific signal shapes and extremely low frequencies
(between 5 and 300Hz) or characteristic shortwaves
are generated by two or more external electromagnetic
coils [Hug and Roosli, 2012]. Typical characteristics
of PEMFs are summarized in Table 1. PEMFs with
specific parameters (e.g., frequency, waveform, mag-
nitude) can result in specific biological responses and
therapeutic effects. Thus, PEMFs with non-invasive
and athermal characteristics were initially tested by
the National Aeronautics and Space Administration
(NASA) in the 1970s and were approved by the Food
and Drug Administration (FDA) for clinical treatment
[Bassett, 1989, 1993]. PEMFs have been successfully
employed as an adjunctive therapy for the treatment
of nonunion fractures, pain [Liu et al., 2016],
inflammatory diseases including arthritis, and osteo-
porosis. Since then, more clinical trials [Tabrah et al.,
1990; Garland et al., 1998; Prevention, 2001; Liu
et al., 2013, 2015] have suggested that PEMFs, which
are as effective as mechanical stimulation and drugs
on retaining bone mass, can prevent bone mass loss,
reduce discomfort such as pain, and improve func-
tional outcomes in patients with PMOP. Additionally,
results of experimental research [Akca et al., 2007;
Sun et al., 2009; Jansen et al., 2010; Shen and Zhao,
2010; Jing et al., 2014; Petecchia et al., 2015; Yan
et al., 2015] have shown that in addition to improving
bone quality and strength as well as promoting
osteogenesis, PEMFs can also inhibit osteoclastic
resorption with no stated side effects. However, there

is an effective window with specific electromagnetic
field parameters and treatment period in the use of
PEMFs in PMOP. Furthermore, the possible mecha-
nisms by which PEMFs act on bone remodeling
remain to be further elucidated.

Few reviews have been conducted to comprehen-
sively summarize the efficacy of PEMFs on osteopo-
rosis. Therefore, this article comprehensively reviews
recent studies regarding the effects of PEMFs on
PMOP treatment as well as the possible mechanisms,
extending our previous review that summarized the
clinical efficacy of PEMFs on osteoporosis [Huang
et al., 2008a]. Literature published before January 2017
has been included, featuring clinical trials, animal
studies, and cellular studies. PubMed, Embase, Web
of Science, and Google Scholar databases were
searched to identify all relevant peer-reviewed articles.
The following key words and free text words were
included: “pulse electromagnetic fields,” “pulse elec-
tromagnetic field,” “pulsed electromagnetic fields,”
“pulsed electromagnetic field,” “PEMFs,” “PEMF,”
“electromagnetic field,” “electromagnetic fields,”
“postmenopausal osteoporosis,” “PMOP,” “osteoporo-
sis,” and their combinations. Articles relevant to the
possible effects or mechanisms of PEMFs on osteopo-
rosis as well as bone metabolism were identified by
reading the titles and abstracts. The inclusion criteria
are as follows: clinical trials that investigated the
effects of PEMFs on PMOP or on senile female
subjects (age� 65) diagnosed with osteopenia or
osteoporosis [Camacho et al., 2016]; and experimental
studies using different animal models of osteoporosis
or bone cells (including bone mesenchymal stem cells
[BMSCs], osteoblasts, and osteoclasts) that elucidated
the bio-effects and possible mechanisms of PEMFs in
regulating bone homeostasis.

CLINICAL ADVANCES IN RESEARCH OF PEMFs
ON PMOP

Effects of PEMFs on Bone Mineral Density

Bone mineral density (BMD) is the bone mineral
content per volume. Densitometry remains the
preferred choice for diagnosing osteoporosis and

TABLE 1. General Characteristics of Pulsed Electromagnetic Fields

Composition Intensity Frequency Waveforms Other characteristics

A pulsed signal
generator; Coils
like Helmholz
and solenoid.

Confusion exists between
some micro tesla (mT)
and several tens of
milli tesla (mT)

General spectrum: 5–
500Hz; Spectrum
for medical
conditions: 5–
300Hz.

Basic periodic waves:
sinusoidal; Other periodic
waves: asymmetric, biphasic,
square, triangle, sawtooth.

The rate of field strength
change in time;
Capacitive and inductive
coupling; Therapy time.
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monitoring therapeutic intervention, due to limited
clinical assessments of bone properties to determine
bone strength. Efficacy of PEMFs on BMD is
increasingly more certain with increasingly accumu-
lated corresponding knowledge, though there is al-
ways controversy. These results are described in
Table 2. Tabrah et al. [1990] adopted the following
parameters, which were 72Hz, 2.85mT PEMFs, and a
duration of 10 h per day to treat 20 women with
PMOP. BMD of treated radii increased significantly
in the sixth week but decreased significantly during
the next 36 weeks after an exposure period of
12 weeks. However, PEMFs were found to have no
long-term effects on BMD with 8-year follow-ups
[Tabrah et al., 1998]. Furthermore, it was found in our
latest [Liu et al., 2013] randomized and actively
controlled clinical trial that one course of PEMF
treatment with specific parameters (8Hz, 3.82mT,
40min/day, 6 times/week, and 30 times as one
complete course of treatment) was equally effective
when compared to administration of alendronate
(70mg/week) for PMOP within 24 weeks. Specifi-
cally, there was no significant difference in the mean
percentage change of BMD in lumbar spine and left
proximal femur between PEMFs and alendronate
groups from baseline to 24 weeks. But a minor decline
trend of bone mass during one month of treatment
exposure (8Hz, 3.82mT) could be observed in our
research, with no statistical differences in intragroup
comparison or compared with the alendronate group.
In contrast to the above-mentioned studies, no signifi-
cant increase in BMD after 3 months could be found
in a single-blind and randomized pilot study
[Giordano et al., 2001], which adopted the following
parameters: 100Hz and 10� 2G PEMF exposure.
Similarly, another randomized and sham-controlled
study [Spadaro et al., 2011] found that the parameters
of 8 weeks, 15Hz, and 2mT PEMFs did not result in
long-term positive changes in BMD in subjects with
forearm disuse osteopenia, after adjusting for age,
gender, and baseline BMD.

Multiple reasons might be responsible for these
controversial results. First, all those trials were
conducted under completely different clinical designs
with a time- or frequency-dependent window effect of
PEMF exposure (frequency range: 8–100Hz, intensity
field range: 0–3.8mT, exposure times: 10min-h/day
for up to 3 months), and some of the patients did not
have PMOP or strictly diagnosed PMOP. Secondly,
the sample size of these studies was too small for a
clinical trial; besides, there was no high-quality,
evidence-based research available to be included in
this review. As a result, large heterogeneity of
results from current studies might contribute to

inconsistency. Moreover, least significant change
[Watts et al., 2010; Lewiecki et al., 2016] of BMD
testing should also be calculated to determine whether
a difference in report was real or was simply within
the inherent variability of measurements. Six to
12 months after initiating the treatment for PMOP
recommended by clinical practice guidelines [Watts
et al., 2010], the response can be monitored accord-
ingly so as to ensure an accurate report of BMD
testing. Therefore, either positive results or negative
results obtained from the above reviews might not
reflect a real change after a period of treatment for
3 months or even less. Thus, BMD changes in PMOP
under PEMF exposure should be further monitored in
dynamic and long-term studies for at least 6 months.

Effects of PEMFs on Bone Turnover Markers
(BTMs)

Although BTMs could not be used for the
diagnosis of osteoporosis, they could be applied in
assessing dynamic skeletal activity associated with
the response to therapeutic intervention within 1–6
months as well as in predicting bone loss and fracture
risk in a BMD-independent manner. The International
Osteoporosis Foundation (IOF) recommends that
clinical trials should use bone resorption products of
collagen degradation, such as serum C-terminal telo-
peptide (S-CTX) and osteoblast-derived products like
serum carboxy-terminal propeptide of type I collagen
(PINP) to analyze BTMs [Vasikaran et al., 2011].
PEMFs have played a positive role in modulating
bone turnover biomarkers for treating PMOP with
limited reliable proof. Studies on dynamic BTMs are
described in Table 2. Though negative BMD change
was reported in a trial [Giordano et al., 2001], the
authors found that PEMF exposure with parameters of
100Hz and 2.85mT (60min/day, 3 times a week for 3
months) could increase serum osteocalcin (OC) and
PINP levels, which were biomarkers associated with
bone formation. Similarly, PEMFs with parameters of
8 weeks, 15Hz, and 2mT maintained the expected
normal level of serum bone-specific alkaline phospha-
tase (BSAP) and decreased CTX level, which were
independent of BMD change, but were still beyond
normal levels in patients with forearm disuse osteope-
nia [Spadaro et al., 2011].

Effects of PEMFs on Functional Outcomes

PMOP, which was associated with fragile bone
strength and high risk of fractures, was strongly linked
with deteriorated functional outcomes and disability;
however, the functional outcomes were used as
indicators in a few studies. Improvement of
physical function is described in Table 2. It was
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indicated in a pilot randomized-controlled trial
[Giusti et al., 2013] that 1.5mW PEMFs (10min/day
for 1 month) resulted in dramatically improved gait
characteristics, self-selected gait speed (cm/s), and
stride length (cm) in older adults with low BMD. The
total lower extremity manual muscle test (LE MMT)
score and Berg Balance Scale (BBS) score were
deemed as secondary endpoints in our previous
research [Liu et al., 2013], in which enhanced
functional outcomes in patients with PMOP after
PEMFs treatment had been confirmed.

ADVANCES IN BASIC RESEARCH OF PEMFs
ON PMOP

Effects of PEMFs on Bone Metabolism in
Animal Studies

PEMFs on bone strength. Bone density and bone
quality were two main characteristics of bone strength.
Consistent with clinical trials, PEMFs could prevent
bone loss and deterioration of bone microstructure in
different animal models of osteoporosis. Evidence on
improvement of bone quality is described in Table 3.
Zati et al. [1993] reported that PEMFs (under the
parameters of 50Hz and 30 Gauss, 1 h/day for 4
months) could slow down ovariectomy-induced bone
loss by 10% in rats, though PEMFs with 70 Gauss did
not have a significant protective effect. Other studies
also suggested that PEMFs led to markedly suppressed
trabecular bone loss and improved cortical and trabecu-
lar bone structure in ovariectomized rats [Sert et al.,
2002; Chang and Chang, 2003]. PEMFs with parame-
ters of 15Hz and 2.4mT (exposure time range: 2–8 h/
day for up to 12 weeks) were applied in a series of
studies to treat different rat models of osteoporosis, and
all showed similar beneficial results [Jing et al., 2010,
2011, 2013, 2014]. In addition, they also found that
specific parameters of PEMFs could alleviate the
deterioration of trabecular and cortical bone micro-
architecture as well as the reduction of bone mechani-
cal properties, including maximum load, stiffness, and
elastic modulus, evidenced by micro-computed tomog-
raphy (mCT) scan and three-point bending test. In line
with their findings, results of dual energy X-ray
absorptiometry (DEXA) revealed that PEMFs could
greatly increase BMD in ovariectomized [Zhou et al.,
2012, 2013] and hindlimb-suspended [Shen and Zhao,
2010] rats. Moreover, results from our research group
[Zhou et al., 2012, 2013] demonstrated that PEMFs
with the parameters of 8Hz and 3.8mT (40min/day, 5
days/week for 12 weeks) could mitigate the deteriora-
tion of bone microarchitecture and strength, as was
evidenced by histological and biomechanical analyses.

Meanwhile, other research groups also reported that
PEMFs with the same parameters (8Hz, 3.8mT,
40min/day, 5 days/week for 12 weeks) had the same
beneficial effect via significantly increasing BMD
(DEXA), bone mechanical properties, and parameters
of mCT (including trabecular bone volume ratio,
trabecular number, trabecular thickness, and separation)
in streptozotocin- and ovariectomy-induced bone loss,
respectively [Zhou et al., 2015, 2017]. However, it was
suggested in a study [van der Jagt et al., 2012] that the
efficacy of PEMFs with the parameters of 15Hz and
1G (2 h/day for 3–6 weeks) might be a source of
controversy since micro-CT scanning could not detect
any changes in cancellous or cortical bone relative to
the untreated controls. Besides, it was discovered that
PEMFs generated by Helmholtz coils (64 cm I.D., 200
turns/coil) with parameters of 15Hz and 5.6A peak-to-
peak square wave could not significantly increase the
calcium content in femur [Takayama et al., 1990].
Accordingly, the window effect might also exist
within the scope of certain parameters (frequency
range: 7.5–50Hz, intensity field range: 0.1–3.8mT,
exposure times: 40min–8h/day for up to 12 weeks),
and varying treatment periods of PEMFs might account
for the diverse results. Moreover, variations in animals
(genders, age, and models) under different experimen-
tal designs and conditions might also affect the
consistency of results.

PEMFs on bone turnover biomarkers. Normal
structural and functional integrity of bone was main-
tained by dynamic remodeling activity. Bone remod-
eling was a homeostasis state governed by equal rates
of osteoblasts that formed new bones and osteoclasts
that resorbed old bones. PEMFs displayed a marked
preventive effect on osteoporosis-induced high bone
turnover in rat models. Results of several studies
(Table 3) supported that PEMFs could significantly
increase levels of biomarkers of osteoblast-associated
bone formation, such as serum bone-specific alkaline
phosphatase (BALP), OC, and P1NP, but they pro-
duced only minor preventive effects on biomarkers of
osteoclast-associated bone resorption [Jing et al.,
2011, 2014; Zhou et al., 2015], such as serum
C-terminal crosslinked telopeptides of type I collagen
(CTX-I) and tartrate-resistant acid phosphatase 5b
(TRAcP5b). Effects of PEMF on bone loss might be
related to significantly improved bone formation
when taking the positive change of bone mass into
consideration. Interestingly, it was reported [Jing
et al., 2010, 2013] that PEMFs could significantly
slow down the rate of bone turnover, leading to
decreases in serum B-ALP, bone Gla protein (BGP),
and TRAcP5b in OVX rats. The inhibitory effects of

PEMFs and Postmenopausal Osteoporosis 5
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PEMFs on high bone turnover and resorption might
interact with the promotion of bone formation to
prevent bone loss. Furthermore, PEMFs could
improve bone anabolism through upregulating serum
17b-estradiol (E2) [Zhou et al., 2012, 2013], trans-
forming growth factor-b (TGF-b) [Shen and Zhao,
2010], and cytokines promoting osteoblastogenesis;
and it could prevent bone catabolism through down-
regulating serum interleukin-6 (IL-6) [Shen and Zhao,
2010], prostaglandin E2 (PGE2) [Chang and Chang,
2003], inflammatory cytokines, and other mediators
promoting osteoclastogenesis.

Effects of PEMFs on Bone Cells

PEMFs on osteoblastic cell lines. BMSC-derived
osteoblasts were involved in the bone formation
process, including synthesis of bone matrix and
formation of dense mineralization. As the active
markers of osteoblasts, type 1 collagen and alkaline
phosphatase (ALP) were critical during the minerali-
zation process. Post-menopausal dysfunction of osteo-
blasts might contribute to osteoporosis. PEMFs could
promote bone formation involving a series of
responses from osteoblasts and progenitor cells, which
was consistent with results from animal and clinical
studies. Numerous studies (Table 4) confirmed that
PEMFs could accelerate osteoblast proliferation, dif-
ferentiation, and mineralization, which was linked
with osteoblast-oriented bone formation [Diniz et al.,
2002; Chang et al., 2004b; Patterson et al., 2006; Li
et al., 2007; Schnoke and Midura, 2007; Sun et al.,
2009; Tsai et al., 2009; Jansen et al., 2010; Sollazzo
et al., 2010; Lin and Lin, 2011; Zhou et al., 2011;
Esmail et al., 2012; Lin et al., 2015; Petecchia et al.,
2015; Yan et al., 2015; Zhai et al., 2016]. Specifically,
it was demonstrated in a recent study [Zhai et al.,
2016] that PEMFs with the parameters of 15.83Hz at
20 Gs (2mT) for 2 h/day rendered the optimal efficacy
of enhancing proliferation of MC3T3-E1 osteoblasts.
Furthermore, it was shown in that study that PEMFs
with specific parameters could significantly improve
osteoblast functions, which was evidenced by ALP
staining and alizarin red staining. Meanwhile,
Ehnert et al. [2015] also discovered that extremely
low-frequency PEMFs with specific parameters
could partly result in remarkably improved mitochon-
drial activity, total protein content, alkaline phospha-
tase activity, and formation of mineralized matrix
of human osteoblasts with poor initial osteoblast
functions.

However, effects of PEMFs on bone formation
remained a source of controversy with a window
effect, which was similar to findings in animal and

clinical studies. Primarily, bone formation induced by
PEMFs might depend on the intensity of magnetic
fields and the diversity of pulse stimulation
[Matsunaga et al., 1996]. Diversified parameter set-
tings (frequency range: 0.2–75Hz, intensity field
range: 0.1mT–1 T, exposure times: 3 min–24 h/day
for up to 25 days) of PEMF devices employed in these
studies might also lead to varying results. Zhou et al.
[2011] suggested that the proliferation of primary
murine osteoblasts could be inhibited by electromag-
netic fields at different intensities, but cellular differ-
entiation and mineralization could be enhanced by
50Hz of electromagnetic fields at intensities of
0.9–1.8 and 3.0–3.6mT. Moreover, it was found by
Yan et al. [2015] that proliferative effects of PEMFs
with parameters of 50Hz and 0.6–3.6mT on primary
murine osteoblasts were significantly positive, with
0.6mT having the highest proliferative effects among
all intensities, which was in contrast to the effects of
50Hz sinusoidal electromagnetic fields (SEMFs) at
0.9–4.8mT on osteoblastic maturation [Zhou et al.,
2011]. They also reported that PEMF stimulation at
0.6mT had positive effects on cellular differentiation
and mineralization. On the other hand, osteoblastic
cell lines derived from multiple species at various
differentiated stages might give rise to conflicting
findings. Though both Diniz et al. [2002] and Chang
et al. [2004b] reported proliferative effects of 15Hz
PEMFs on MC3T3-E1 cell lines and primary murine
osteoblasts, the latter group found that PEMF stimula-
tion had no effect on osteoblast differentiation or
mineralization. Furthermore, other confounding fac-
tors, such as different experimental conditions, cell
densities [Tsai et al., 2009; Jansen et al., 2010],
culture periods [Diniz et al., 2002; Sun et al., 2009;
Jansen et al., 2010], and concentrations of fetal calf
serum [Sollazzo et al., 1997] could also contribute to
conflicting findings in cellular studies.

PEMFs on cell lines of osteoclasts. Osteoclasts
deriving from hematopoietic cells of monocyte/mac-
rophage lineage played a critical role in breaking
down the bone hydrated protein–mineral complex by
secreting acid and collagenase. The absence of
estradiol might excessively activate osteoclasts and
their subsequent bone resorption. PEMFs might have
an inhibitory effect on osteoclastogenesis (Table 4).
Chang et al. [2004a, 2006] found that PEMFs at
7.5Hz could significantly suppress osteoclast prolifer-
ation and promote apoptosis of murine osteoclasts. It
was also reported in similar studies [He et al.,
2015] that PEMFs with parameters of 3.8mT and
8Hz, which were parallel to the effects of osteoprote-
gerin (OPG) and estradiol, substantially reduced the

8 Zhuet al.
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number of osteoclast-like cells induced by macro-
phage colony-stimulating factor (M-CSF) together
with receptor activator of the NF-kB ligand
(RANKL).

MECHANISMS OF PEMFs IN PMOP

The Regulation Roles of PEMFs in
Osteogenesis

Upregulation of osteogenesis-associated gene
expression. The efficacy of PEMFs on bone forma-
tion indicates that they might regulate genes involved
in osteoblast proliferation and differentiation. As was
reported by Zhai et al. [2016], PEMFs could signifi-
cantly upregulate the expression of two markers of
cell cycle progression (Ccnd 1 and Ccne 1) at
osteoblast proliferation stage and alkaline phosphatase
marker of osteoblast differentiation. Stimulation of
PEMFs with different parameters were confirmed in
several studies to significantly upregulate the expres-
sion of two important transcription factors, Runx2/
cbfa1 [Komori, 2006; Tsai et al., 2009; Zhou et al.,
2011, 2015; Ehnert et al., 2015; Yan et al., 2015; Zhai
et al., 2016] and osterix [Cheng et al., 2011; Ehnert
et al., 2015; Yan et al., 2015] at both proliferation and
differentiation stages, which were involved in the
development of the osteoblastic lineage (Table 4). In
addition, PEMF exposure also significantly upregu-
lated the expression of genes involved in bone matrix
formation, which were comprised of type 1 collagen
(COL1) [Lin and Lin, 2011; Zhou et al., 2011; Yan
et al., 2015; Zhai et al., 2016]; noncollagenous
proteins including osteocalcin (OC) [Jansen et al.,
2010; Zhai et al., 2016] and bone sialoprotein (BSP)
[Jansen et al., 2010]; as well as growth factors
including insulin-like growth factors-1 (IGF-1)
[Esmail et al., 2012], TGF-b [Jansen et al., 2010], and
bone morphogenetic proteins (BMPs) [Jansen et al.,
2010; Zhou et al., 2011; Lin et al., 2015; Yan et al.,
2015]. Furthermore, a microarray analysis (Table 4)
on human osteoblast-like cells (MG63) exposed to
18 h of PEMFs indicated that stimulations could also
inhibit the process of bone catabolism through upre-
gulating TIMP1, a degradation inhibition marker of
extracellular matrix induced by matrix metalloprotei-
nase (MMP), and downregulating MMP-11 and dual-
specificity phosphatase 4 (DUSP4) that are involved
in the inhibition of osteoblast proliferation and
differentiation [Sollazzo et al., 2010].

The role of canonical Wnt signaling pathway.
Canonical Wnt signaling was a major regulator
involved in skeletal development and bone homeostasis

[Day et al., 2005; Glass et al., 2005; Baron and
Kneissel, 2013]. In nature, canonical Wnt signaling is
activated by the binding of extracellular Wnt ligands to
the frizzled (FZD) and LRP5/6 co-receptors on the cell
membrane, thus inhibiting the degradation of b-catenin
and increasing the translocation of b-catenin from
cytoplasm to cell nucleus to upregulate target gene
transcription [Baron and Kneissel, 2013]. Therefore,
mutations targeting canonical Wnt signaling have
contributed to negatively affecting bone formation via
inhibiting osteoblast maturation and promoting osteo-
blast apoptosis. Accumulating evidence confirmed that
knockout of Wnt10b [Bennett et al., 2007], Lrp5/6
[Masaki et al., 2002; Philippe et al., 2005; Kubota
et al., 2008], and b-catenin [Joeng et al., 2011] genes
resulted in bone formation defects and low bone mass
in mice. Inversely, mutations of SOST [Kramer et al.,
2010], DKK1 [Wang et al., 2007], Kremen2 [Schulze
et al., 2010], and Sfrp1/4 [Bodine et al., 2004;
Nakanishi et al., 2008], which were antagonists or
inhibitors of canonical Wnt signaling, could also lead
to disordered bone homeostasis in murine.

Therefore, PEMFs might exert a positive effect
on osteogenesis via the activation of canonical Wnt
signaling. It was reported by a research group [Jing
et al., 2013, 2014] that 4- and 10-week PEMF
treatments could markedly enhance mRNA expression
of Wnt1, b-catenin, and Lrp5 in hindlimb-suspended
male rats and ovariectomied female rats, respectively.
Zhou et al. [2012] found that 4-week PEMF treatment
with parameters of 8Hz at 3.8mT could activate
canonical Wnt signaling by upregulating Wnt3a,
LRP5, and b-catenin and downregulating DKK1 in
ovariectomied rats (Table 3). Zhai et al. [2016] also
observed that PEMFs could significantly increase
gene and protein expression levels of Wnt1, LRP6,
and b-catenin in MC3T3-E1 osteoblasts at both
proliferation and differentiation stages, which was
consistent with studies in vivo. It was further verified
in another study [Lin et al., 2015] that short-term
single-pulsed electromagnetic field treatment rendered
a series of significantly increased gene expression of
canonical Wnt signaling, including Wnt1, Wnt3a,
Wnt10b, and Fzd9 in MC3T3-E1 osteoblasts during
osteogenic differentiation stage (Table 4). In addition,
PEMFs with parameters of 3.8mT and 8Hz could
significantly upregulate the mRNA expression of
b-catenin and Lrp5 while downregulate that of DKK1
in rats with Diabetes mellitus (DM)-induced fragile
bone quality, as was discovered by Zhou et al. [2015].

Other possible signaling pathways triggered by
PEMFs. It had been suggested that the application
of electromagnetic fields might also activate several
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signaling pathways, such as mTOR or NO/cGMP/
PKG signaling pathways. mTOR signaling pathway
played a key role in osteoblast differentiation, and
mTOR inhibitor, rapamycin, could inhibit osteogen-
esis both in vivo and in vitro; while over-expression
of p70S6K, the downstream effector of mTOR,
could significantly increase osteoblast differentia-
tion [Singha et al., 2008; Xian et al., 2012].
Meanwhile, suppressing the activation of nuclear
receptor peroxisome proliferator-activated receptor-
g (PPARg), which mainly promoted the differentia-
tion of BMSCs into adipocytes [Sun et al., 2013],
could notably enhance the mTOR signaling path-
way. It was confirmed by Patterson et al.
[2006] that PEMF exposure gave rise to markedly
increased levels of three major components of the
mTOR signaling pathway, which were mTOR as
well as its downstream targets p70 S6 kinase and
ribosomal protein S6. Conversely, they also found
that effects of PEMFs on the activation of the
mTOR signaling pathway could be blocked by
rapamycin and PI3-kinase inhibitor, an upstream
regulator of mTOR (Table 4).

Additionally, the NO/cGMP/PKG signaling
pathway might be another key regulator in osteoblast
maturation [Francis et al., 2010], which involved the
endogenous formation of NO by nitric synthase and
the downstream activation of cyclic guanosine mono-
phosphate (cGMP), soluble guanylyl cyclase (sGC),
and cAMP-dependent protein kinase (PKG). It has
been discovered in studies that SEMFs with the
parameters of 50Hz at 1.8mT could significantly
upregulate the expression of NOS, sGC, and PKG
proteins, and effects of SEMFs on the activation of
the NO/cGMP/PKG signaling pathway as well as the
osteoblast anabolism could be blocked by inhibitors
of these proteins (Table 4) [Huang et al., 2008b;
Cheng et al., 2011].

On the other hand, transmembrane receptors such
as insulin, parathyroid hormones, Ca2þ/calcitonin, or
transferrin receptors, which had been proven to be
modulated by PEMFs [Ciombor and Aaron, 2005;
Schnoke and Midura, 2007; Pilla et al., 2011; Lin
et al., 2015], might activate the same signaling
cascades, namely, the NO/cGMP/PKG signaling path-
way (Table 4). Schnoke and Midura [2007] confirmed
that PEMF exposure played a role analogous to that of
parathyroid hormone (PTH) and insulin by promoting
phosphorylation of the key signaling proteins such as
insulin receptor substrate-1 (IRS-1), endothelial nitric
oxide synthase (eNOS), and S6 ribosomal subunit
kinase, which were involved in bone anabolism.
Moreover, Zhang et al. [2010] reported that EMF with
parameters of 50Hz at 0.8mT resulted in exclusively

markedly increased intracellular calcium levels of
osteoblasts. On the basis of their work, Cheng et al.
[2011] further confirmed that nNOS and eNOS, which
were the two Ca2þ/calmodulin-dependent nitric oxide
synthases, were regulated by intracellular Ca2þ

concentration in osteoblasts.

Regulatory Effects of PEMFs on
Osteoclastogenesis

Downregulation of inflammatory cytokines.
Maturation and function of osteoclasts were modu-
lated by multiple factors at different cellular and
molecular levels. Estrogen deficiency could lead to
significantly increased levels of osteoclastic bone
resorption-associated cytokines, which were produced
by osteoblasts and bone marrow cells [Teitelbaum and
Ross, 2003].

As one of the most potent bone-resorbing
factors, inflammatory cytokines were responsible for
accelerating osteoclastogenesis and bone resorption
[Steeve et al., 2004]. It had been indicated in
numerous studies (Tables 3 and 4) that stimulation by
PEMFs could significantly decrease levels of inflam-
matory cytokines [Chang and Chang, 2003; Chang
et al., 2004a, 2006; Shen and Zhao, 2010; Vincenzi
et al., 2013]. Specifically, Chang et al. [2004a] found
that 7.5Hz PEMF treatment significantly decreased
levels of tumor necrosis factor-a (TNF-a), interleukin
1b (IL-1b), and interleukin 6 (IL-6) in bone marrow
cells derived from ovariectomied rats. Furthermore,
they confirmed that 7.5Hz PEMF treatment could
accelerate the apoptosis rate of osteoclasts [Chang
et al., 2006]. Thus, the anti-inflammatory effect might
be another potential efficacy of PEMFs.

However, the mechanism by which PEMFs
downregulated the inflammatory cytokines still
remains unclear. Adenosine receptors (ARs) have been
proven to be involved in the modulation of inflamma-
tion-based pathological processes [Kara et al., 2010;
Varani et al., 2011]. PEMF stimulation could increase
the expression of selective ARs in various cell types
[Varani et al., 2003, 2012]. Vincenzi et al. [2013]
suggested that PEMFs could activate expression of
A2A and A3ARs (Table 4), the subtypes of ARs, in
hFOB 1.19 osteoblasts, so as to induce anti-inflamma-
tory effects by decreasing the release of IL-6/8 and the
inflammatory mediator PGE2 [Chang and Chang,
2003; Shen and Zhao, 2010]. Furthermore, several
studies reported that ARs might play important
roles in the differentiation and function of osteoblasts
[Carroll et al., 2012; Takedachi et al., 2012]. Accord-
ingly, it was possible that PEMFs exerted its anti-
inflammatory effects through osteoblasts.
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The role of OPG/RANK/RANKL signaling. OPG/
RANK/RANKL signaling played a critical role in
osteoclast maturation and activity. Receptor activator
of the NF-kB ligand (RANKL), a cell surface protein
that was mainly expressed by osteocytes and osteo-
blasts in bone [Yasuda et al., 1998], bound to its
specific receptor (RANK), an autonomous protein on
the membrane of osteoclasts [Li et al., 2000], to
activate several important osteoclastogenesis-related
signaling pathways. Osteoprotegerin (OPG), which
was mainly secreted by osteoblasts, was a soluble
“decoy receptor” for RANKL that prevented the
maturation of osteoclasts through blocking the activity
of the RANKL/RANK signaling pathway [Lacey
et al., 1998]. Any alteration in the ratio of OPG/
RANKL could lead to either excessive osteogenesis
or excessive bone resorption. Thus, the balance of
OPG/RANKL influenced bone remodeling rate
[Steeve et al., 2004; Theoleyre et al., 2004].

PEMFs might potentially exert their inhibitory
effects on the modulation of osteoclastogenesis via the
OPG/RANK/RANKL signaling pathway (Tables 3 and
4). As was verified by Chang et al. [2004b], PEMF
exposure could significantly increase the ratio of OPG/
RANKL in murine osteoblast-like cells at mRNA
levels. Meanwhile, accumulating evidence showed that
inflammatory cytokines exerted their regulatory effects
on osteoclastogenesis and bone resorption by simulat-
ing the production of RANKL [Steeve et al., 2004]. It
has been proven that PEMFs could not only signifi-
cantly increase OPG, but could also reduce the
activation of IL-1b-induced NF-kB p65 subunit
through activating anti-inflammatory effects of ARs,
as described above [Vincenzi et al., 2013]. Also, 8Hz
and 3.8mT PEMFs might prevent ovariectomy-
induced bone loss through suppressing the expression
of RANKL while improving that of OPG in lumbar,
femur, and tibia, respectively [Zhou et al., 2013,
2017]. Furthermore, a study in vitro [He et al.,
2015] found that PEMFs inhibited the expression of
carbonic anhydrase II (CA II) that regulated the
resorptive activity of osteoclasts and nuclear factor of
activated T-cells, cytoplasmic 1 (NFATc1), which
acted as a key transcription factor in OPG/RANK/
RANKL signaling and RANK during the induction of
osteoclast-like cells. However, it was suggested by
some evidence based on negative results that RANK/
RANKL signaling might play a minor role in the
regulation of bone remodeling. As was indicated by
Chen et al. [2010], though PEMFs inhibited the
expression of CA II, they had no effect on the
expression of RANK in osteoclast-like cells deriving
from ovariectomized rats. It was reported in studies
both in vivo and in vitro [Jing et al., 2013, 2014] that

no alteration in the mRNA expression of RANK/
RANKL could be detected by the treatment of PEMFs.

DISCUSSION

Clinical Application of PEMFs

Taken together, our systematic review demon-
strates that the clinical application of PEMFs, which
have no side effects such as hormonology impairment
[Huifang et al., 2013], may become one major
preferred option of physical therapy for patients with
PMOP. At first, the clinical studies reviewed in this
paper indicate that PEMFs within an effective window
can prevent bone loss and may reduce BTMs in
PMOP. As one of the many potential therapeutic
interventions to treat PMOP, the effects of PEMFs on
the improvement of physical function are promising.
Compared with the positive efficacy of Alendronate, a
first-line treatment for PMOP, results from our
research group [Liu et al., 2013] implied that PEMFs
with specific parameters (8Hz, 3.82mT) showed
similar effectiveness within 24 weeks. Secondly, the
inhibitory effects of PEMFs on the deterioration of
bone strength and high bone turnover are further
supported by experimental studies reviewed in this
paper. The results indicate that PEMFs may promote
the quality of bone gain and subsequently reduce risk
of post-osteoporosis fracture.

Although extensive research, especially in recent
decades, has improved our understanding of the
physiological effects of PEMFs on PMOP, contro-
versy among these findings still exist. The beneficial
effects of PEMFs with varying exposure parameters
on PMOP remain questionable. Though positive
effects can be observed during treatment period (1–3
months), long-term follow-up (1–8 years) data suggest
no further positive effects on BMD. Different expo-
sure times (3min–24 h per day for up to 12 weeks in
the course of treatment) in animal and cellular studies
also have resulted in various kinds of positive or
minor effectiveness on osteoporosis. Also, PEMF
exposure at varying intensities and frequencies (fre-
quency range: 0.2–75Hz and intensity field range:
0.1mT–1T) may have inconsistent bio-effects on
osteoblasts at different differentiation stages. More-
over, PEMFs with non-sinusoidal signal shapes that
consist of monopolar or bipolar rectangular magnetic
pulses with periodic peaks are used for PMOP
treatment [Hug and Roosli, 2012]. But evidence for
comparability between specific signal shapes is lack-
ing. Thus, initiation and optimal dosage of PEMF
treatment for patients with PMOP are still uncertain
because of varying parameters’ window effects.
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In addition, although potential adverse effects after
long-term application of PEMFs have not been found,
two studies indicated that the use of PEMFs may be
carcinogenic [Kheifets et al., 2010] and is
not recommended for patients with cardiac devices
[Gwechenberger et al., 2006]. Interestingly, for treatment
purposes, PEMFs at specific parameters (frequency
range: 50,120Hz and intensity field range: 2.5–20mT)
have been proven to be effective in retardation of cancer
growth [Cameron et al., 2007, 2014; Tatarov et al.,
2011]. Thus, contraindications from long-term PEMF
exposure should be addressed in future research.

Trends in Elucidating Therapeutic Mechanism

The possible mechanism for the response of
PMOP to PEMF treatment indicates that the enhance-
ment of osteoblast-derived bone formation is associated
with promotion of osteoblast formation. Also, upregu-
lation of osteoblastic genes induced through several
signaling pathways (such as Wnt signaling) may have a
major role. Meanwhile, PEMFs may suppress osteo-
clast-derived bone resorption by inhibiting maturation
of osteoclasts together with molecular signaling path-
ways relevant to osteoclastogenesis, such as NF-kB
signaling, requiring further elucidation.

The relationship between low BMD and high
fracture risk is a continuum in PMOP. Despite a net
growth of bone density with the mechanism of dual
regulation in bone turnover accounting for most of the
positive effects of PEMFs on PMOP, the fracture risk-
benefit ratio for PEMFs within 10 years remains
obscure. The therapeutic agents recommended by the
FDA all contribute to a 10-year reduction of fracture
risk at different levels [Camacho et al., 2016]. One
high-quality randomized controlled trial further dem-
onstrated that rational sequential use of anabolic
therapy and antiresorptive agents (e.g., teriparatide
and denosumab) resulted in a larger decrease in
fracture risk than either one alone and a corresponding
increase in BMD during a 4-year follow-up [Leder
et al., 2015]. However, the efficacy of combined use
of PEMFs with other agents has not been investigated.
Therefore, it is imperative to further investigate
whether PEMF therapy would solely reduce fracture
risk in population with PMOP within 10 years or if
the combination would do better.

Moreover, the biological mechanism of PEMFs
in treating PMOP has not been perfectly proven.
Based on our current understandings, multiple initia-
tors and intracellular signaling pathways may be
activated by PEMFs; however, pathway is the most
important one and remains unclear. In addition, apart
from regulating the balance of bone metabolism, these
pathways also play important roles in maintaining

homeostasis of other tissues such as the brain and
intestines via regulating the evolution and develop-
ment of normal or cancer stem cell proliferation,
morphology, and life-cycle [Suzuki et al., 2004]. The
activation of Wnt signaling has been proven to be
involved in the development of several kinds of
carcinomas such as liver and colorectal cancers
[Lustig et al., 2002; Takahashi-Yanaga and Kahn,
2010]. The process of autophagy, a natural cell-repair
mechanism regulated by mTOR signaling [Kaushik
and Cuervo, 2006], also plays a key role in promoting
tumors [Guo et al., 2013]. Nonetheless, it is unknown
if the activation of Wnt signaling by PEMFs is
associated with carcinogenesis. There are no reports
regarding whether autophagy-mediated bone repair is
a potential mechanism of PEMFs. Both issues need
further investigation.

CONCLUSION

Due to current knowledge of PEMFs and their
promising role in treating PMOP, their use can only
be recommended on the basis of more reliable
evidence derived from ongoing high-quality, random-
ized controlled trials with the addition of larger
sample sizes, adverse events, longer term follow-up
period, and physical therapy or osteoporosis-related
efficacy indicators. Given the gaps between physio-
logical mechanism and heterogeneous therapeutic
effects of PEMFs, basic research involving advanced
molecular tools such as gene-knockout mice and
better-defined exposure conditions are needed. Only
after that, the application of PEMFs for PMOP
treatment may be recognized as safe and efficient.
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